TCP的三次握手与四次挥手

三次握手

客户端 (SYN_SENT) >>> SYN=1, seq=client_isn >>> 服务器 (LISTEN)

客户端() <<< SYN=1, ACK=1, seq=server_isn, ack=client_isn+1 <<< 服务器 (SYN_RCVD)

客户端(ESTABLISHED) >>> SYN=0, seq=cilent_isn+1, ACK=1, ack=server_isn+1 >>> 服务器(ESTABLISHED)

SYN泛洪攻击:客户端不发送第三次握手确认导致服务器大量消耗资源而宕机。

解决方法:SYN cookies,只有等到客户端发送了包含server_isn+1的ack后服务器再去分配资源。

四次挥手

  1. 第一次挥手: Client端发起挥手请求,向Server端发送标志位是FIN报文段,设置序列号seq,此时,Client端进入FIN_WAIT_1状态,这表示Client端没有数据要发送给Server端了。
  2. 第二次挥手:Server端收到了Client端发送的FIN报文段,向Client端返回一个标志位是ACK的报文段,ack设为seq加1,Client端进入FIN_WAIT_2状态,Server端告诉Client端,我确认并同意你的关闭请求。
  3. 第三次挥手: Server端向Client端发送标志位是FIN的报文段,请求关闭连接,同时Client端进入LAST_ACK状态。
  4. 第四次挥手 : Client端收到Server端发送的FIN报文段,向Server端发送标志位是ACK的报文段,然后Client端进入TIME_WAIT状态。Server端收到Client端的ACK报文段以后,就关闭连接。此时,Client端等待2MSL的时间后依然没有收到回复,则证明Server端已正常关闭,那好,Client端也可以关闭连接了。

为什么要等待2MSL?

  • 第一点:保证TCP协议的全双工连接能够可靠关闭
    由于IP协议的不可靠性或者是其它网络原因,导致了Server端没有收到Client端的ACK报文,那么Server端就会在超时之后重新发送FIN,如果此时Client端的连接已经关闭处于CLOESD状态,那么重发的FIN就找不到对应的连接了,从而导致连接错乱,所以,Client端发送完最后的ACK不能直接进入CLOSED状态,而要保持TIME_WAIT,当再次收到FIN的收,能够保证对方收到ACK,最后正确关闭连接。
  • 第二点:保证这次连接的重复数据段从网络中消失
    如果Client端发送最后的ACK直接进入CLOSED状态,然后又再向Server端发起一个新连接,这时不能保证新连接的与刚关闭的连接的端口号是不同的,也就是新连接和老连接的端口号可能一样了,那么就可能出现问题:如果前一次的连接某些数据滞留在网络中,这些延迟数据在建立新连接后到达Client端,由于新老连接的端口号和IP都一样,TCP协议就认为延迟数据是属于新连接的,新连接就会接收到脏数据,这样就会导致数据包混乱。所以TCP连接需要在TIME_WAIT状态等待2倍MSL,才能保证本次连接的所有数据在网络中消失。

1. time_wait状态如何产生? 
由上面的变迁图,首先调用close()发起主动关闭的一方,在发送最后一个ACK之后会进入time_wait的状态,也就说该发送方会保持2MSL时间之后才会回到初始状态。MSL值得是数据包在网络中的最大生存时间。产生这种结果使得这个TCP连接在2MSL连接等待期间,定义这个连接的四元组(客户端IP地址和端口,服务端IP地址和端口号)不能被使用。

2.time_wait状态产生的原因

  • 为实现TCP全双工连接的可靠释放。由TCP状态变迁图可知,假设发起主动关闭的一方(client)最后发送的ACK在网络中丢失,由于TCP协议的重传机制,执行被动关闭的一方(server)将会重发其FIN,在该FIN到达client之前,client必须维护这条连接状态,也就说这条TCP连接所对应的资源(client方的local_ip,local_port)不能被立即释放或重新分配,直到另一方重发的FIN达到之后,client重发ACK后,经过2MSL时间周期没有再收到另一方的FIN之后,该TCP连接才能恢复初始的CLOSED状态。如果主动关闭一方不维护这样一个TIME_WAIT状态,那么当被动关闭一方重发的FIN到达时,主动关闭一方的TCP传输层会用RST包响应对方,这会被对方认为是有错误发生,然而这事实上只是正常的关闭连接过程,并非异常。
  • 为使旧的数据包在网络因过期而消失。为说明这个问题,我们先假设TCP协议中不存在TIME_WAIT状态的限制,再假设当前有一条TCP连接:(local_ip, local_port, remote_ip,remote_port),因某些原因,我们先关闭,接着很快以相同的四元组建立一条新连接。本文前面介绍过,TCP连接由四元组唯一标识,因此,在我们假设的情况中,TCP协议栈是无法区分前后两条TCP连接的不同的,在它看来,这根本就是同一条连接,中间先释放再建立的过程对其来说是“感知”不到的。这样就可能发生这样的情况:前一条TCP连接由local peer发送的数据到达remote peer后,会被该remot peer的TCP传输层当做当前TCP连接的正常数据接收并向上传递至应用层(而事实上,在我们假设的场景下,这些旧数据到达remote peer前,旧连接已断开且一条由相同四元组构成的新TCP连接已建立,因此,这些旧数据是不应该被向上传递至应用层的),从而引起数据错乱进而导致各种无法预知的诡异现象。作为一种可靠的传输协议,TCP必须在协议层面考虑并避免这种情况的发生,这正是TIME_WAIT状态存在的第2个原因。

3.time_wait状态如何避免

  1. 服务器可以设置SO_REUSEADDR套接字选项来通知内核,如果端口忙,但TCP连接位于TIME_WAIT状态时可以重用端口。在一个非常有用的场景就是,如果你的服务器程序停止后想立即重启,而新的套接字依旧希望使用同一端口,此时SO_REUSEADDR选项就可以避免TIME_WAIT状态。可以改为长连接,但代价较大,长连接太多会导致服务器性能问题,而且PHP等脚本语言,需要通过proxy之类的软件才能实现长连接;
  2. 修改ipv4.ip_local_port_range,增大可用端口范围,但只能缓解问题,不能根本解决问题;
  3. 客户端程序中设置socket的SO_LINGER选项;
  4. 客户端机器打开tcp_tw_recycle和tcp_timestamps选项;
  5. 客户端机器打开tcp_tw_reuse和tcp_timestamps选项;
  6. 客户端机器设置tcp_max_tw_buckets为一个很小的值